- Flink技术内幕:架构设计与实现原理
- 罗江宇 赵士杰等
- 1863字
- 2025-02-20 11:49:27
1.4 Flink设计理念与基本架构
到目前为止,我们从整体上对Flink的源代码有了初步了解,接下来将从设计理念的角度将Flink与主流计算引擎Hadoop MapReduce和Spark进行对比,并从宏观上介绍Flink的基本架构。
1.4.1 Flink与主流计算引擎对比
1. Hadoop MapReduce
MapReduce是由谷歌首次在论文“MapReduce: Simplified Data Processing on Large Clusters”(谷歌大数据三驾马车之一)中提出的,是一种处理和生成大数据的编程模型。Hadoop MapReduce借鉴了谷歌这篇论文的思想,将大的任务分拆成较小的任务后进行处理,因此拥有更好的扩展性。如图1-8所示,Hadoop MapReduce包括两个阶段——Map和Reduce:Map阶段将数据映射为键值对(key/value),map函数在Hadoop中用Mapper类表示;Reduce阶段使用shuffle后的键值对数据,并使用自身提供的算法对其进行处理,得到输出结果,reduce函数在Hadoop中用Reducer类表示。其中shuffle阶段对MapReduce模式开发人员透明。

图1-8 Hadoop MapReduce处理模型
Hadoop MR1通过JobTracker进程来管理作业的调度和资源,TaskTracker进程负责作业的实际执行,通过Slot来划分资源(CPU、内存等),Hadoop MR1存在资源利用率低的问题。Hadoop MR2为了解决MR1存在的问题,对作业的调度与资源进行了升级改造,将JobTracker变成YARN,提升了资源的利用率。其中,YARN的ResourceManager负责资源的管理,ApplicationMaster负责任务的调度。YARN支持可插拔,不但支持Hadoop MapReduce,还支持Spark、Flink、Storm等计算框架。Hadoop MR2解决了Hadoop MR1的一些问题,但是其对HDFS的频繁I/O操作会导致系统无法达到低延迟的要求,因而它只适合离线大数据的处理,不能满足实时计算的要求。
2. Spark
Spark是由加州大学伯克利分校开源的类Hadoop MapReduce的大数据处理框架。与Hadoop MapReduce相比,它最大的不同是将计算中间的结果存储于内存中,而不需要存储到HDFS中。
Spark的基本数据模型为RDD(Resilient Distributed Dataset,弹性分布式数据集)。RDD是一个不可改变的分布式集合对象,由许多分区(partition)组成,每个分区包含RDD的一部分数据,且每个分区可以在不同的节点上存储和计算。在Spark中,所有的计算都是通过RDD的创建和转换来完成的。
Spark Streaming是在Spark Core的基础上扩展而来的,用于支持实时流式数据的处理。如图1-9所示,Spark Streaming对流入的数据进行分批、转换和输出。微批处理无法满足低延迟的要求,只能算是近实时计算。

图1-9 Spark Streaming处理模型
Structured Streaming是基于Streaming SQL引擎的可扩展和容错的流式计算引擎。如图1-10所示,Structured Streaming将流式的数据整体看成一张无界表,将每一条流入的数据看成无界的输入表,对输入进行处理会生成结果表。生成结果表可以通过触发器来触发,目前支持的触发器都是定时触发的,整个处理类似Spark Streaming的微批处理;从Spark 2.3开始引入持续处理。持续处理是一种新的、处于实验状态的流式处理模型,它在Structured Streaming的基础上支持持续触发来实现低延迟。

图1-10 Structured Streaming处理模型
3. Flink
Flink是对有界数据和无界数据进行有状态计算的分布式引擎,它是纯流式处理模式。流入Flink的数据会经过预定的DAG(Directed Acyclic Graph,有向无环图)节点,Flink会对这些数据进行有状态计算,整个计算过程类似于管道。每个计算节点会有本地存储,用来存储计算状态,而计算节点中的状态会在一定时间内持久化到分布式存储,来保证流的容错,如图1-11所示。这种纯流式模式保证了Flink的低延迟,使其在诸多的实时计算引擎竞争中具有优势。

图1-11 Flink流式处理模型
1.4.2 Flink基本架构
本节从分层角度和运行时角度来介绍Flink基本架构。其中,对于运行时Flink架构,会以1.5版本为分界线对前后版本的架构变更进行介绍。
1. 分层架构
Flink是分层架构的分布式计算引擎,每层的实现依赖下层提供的服务,同时提供抽象的接口和服务供上层使用。整体分层架构如1-12所示。

图1-12 Flink分层架构
- 部署:Flink支持本地运行,支持Standalone集群以及YARN、Mesos、Kubernetes管理的集群,还支持在云上运行。(注:Flink部署模式会在第8章详细介绍。)
- 核心:Flink的运行时是整个引擎的核心,是分布式数据流的实现部分,实现了运行时组件之间的通信及组件的高可用等。
- API:DataStream提供流式计算的API,DataSet提供批处理的API,Table和SQL API提供对Flink流式计算和批处理的SQL的支持。
- Library:在Library层,Flink提供了复杂事件处理(CEP)、图计算(Gelly)及机器学习库。
2. 运行时架构
Flink运行时架构经历过一次不小的演变。在Flink 1.5版本之前,运行时架构如图1-13所示。

图1-13 Flink 1.5以前版本的运行时架构
- Client负责编译提交的作业,生成DAG,并向JobManager提交作业,往JobManager发送操作作业的命令。
- JobManager作为Flink引擎的Master角色,主要有两个功能:作业调度和检查点协调。
- TaskManager为Flink引擎的Worker角色,是作业实际执行的地方。TaskManager通过Slot对其资源进行逻辑分割,以确定TaskManager运行的任务数量。
从Flink 1.5开始,Flink运行时有两种模式,分别是Session模式和Per-Job模式。
- Session模式:在Flink 1.5之前都是Session模式,1.5及之后的版本与之前不同的是引入了Dispatcher。Dispatcher负责接收作业提交和持久化,生成多个JobManager和维护Session的一些状态,如图1-14所示。

图1-14 Session模式
- Per-Job模式:该模式启动后只会运行一个作业,且集群的生命周期与作业的生命周期息息相关,而Session模式可以有多个作业运行、多个作业共享TaskManager资源,如图1-15所示。

图1-15 Per-Job模式